
Prinzipien der Programmierung:
Graphs and Catalan

Addie Jordon (he/they)

November 2024

addie.jordon@uni-bielefeld.de

mailto:addie.jordon@uni-bielefeld.de

ADT: Graphs

• A graph is a set of vertices (nodes) and a collection of
pairs from , called edges

G = (V, E) V E
V

Graph Definition

A

B

D

C

 = {A, B, C, D}V

 = {{A, B}, {A,B}, {B,D}, {B,D},
{A,D}, {D,C}, {A,C}}
E

Different Types of Graphs
• directed graphs (digraphs)

• undirected graphs

• simple graphs

• complete graphs

• connected graphs

• acyclic graphs

• bipartite graphs

• weighted graphs

• trees

Undirected Graphs
• An undirected edge represents a symmetric

relation between two vertices and .

• where is an unordered pair

• are endpoints

• is adjacent to

• is incident to both

• : the number of vertices,

• : the number of edges,

e
v w

e = {v, w} {v, w}
v, w
v w
e v, w
n |V |
m |E |

A

B

D

C

undirected

Undirected Graphs
• An undirected edge represents a symmetric

relation between two vertices and .

• degree of a vertex is the number of edges

incident to it

• eg. deg(A) = 4

• parallel edges: more than one edge between a
pair of vertices (uncommon)

• self-loop: an edge that connects a vertex to itself

• for this course, unless specified, you can

assume the graph will not have parallel
edges nor self-loops

e
v w

A

B

D

C

undirected

Connected Graphs
• A graph is connected if every pair of vertices is connected by a

path

A

B

D

C

E

B

D

C

E
Connected

A

Unconnected

Graph ADT: Operations
• numVertices(): returns the number of

vertices in the graph,

• numEdges(): returns the number of edges in the
graph,

• vertices(): returns an iterator of the vertices in

• edges(): returns an iterator of the edges in

• degree(v): returns the degree of vertex

n

m

G
G

v

A

B

D

C

undirected

Graph ADT: Operations
• adjacentVertices(v): iterator of all

neighbours of

• incidentEdges(v): iterator of all edges
incident to

• endpoints(e): that are endpoints of

• opposite(v,e): , the other endpoint of

• areAdjacent(v,w): true if are neighbours,
false otherwise

v

v
v, w e

w e
v, w

A

B

D

C

undirected

Graph modification methods
• insertEdge(v,w): insert and return an

undirected edge between vertices and

• insertDirectedEdge(v,w): insert an return a
directed edge between vertices and , with
as the source and as the destination

• insertVertex(v,o): insert and return an
isolated vertex with object stored in the vertex

v w

v w v
w

v o

A

B

D

C

Graph modification methods
• removeVertex(v): remove vertex and all its

edges

• removeEdge(e): remove edge

• makeUndirected(e): make edge undirected

• reverseDirection(e): reverse direction of
directed edge

• setDirectionFrom(e,v): make edge directed
away from

• setDirectionTo(e,v): make edge directed
into

v

e
e

e
e

v
e

v

A

B

D

C

How to store a graph?
• Node-centric option

• vertex and edge objects

• adjacency-lists

• labeled adjacency-lists

• adjacency-matrix (0s and 1s)

• labeled adjacency-matrix

A

B

D

C

Option 1: store a list of edges
• Store a list of vertices and a list of edges

(linked lists or arrays)

• Maintain the vertices

• Maintain the edges

• Pros

• Simple, only need to store 2 things

• Cons

• vertex-centric operations run in
time

• any vertices without edges cannot be
stored

O(m)

A

B

D

C

E

F
I

G H

how long to iterate over
vertices adjacent to E?

A C

A E

B E

B I

C D

C F

D F

D I

E G

E HremoveVertex(v),

areAdjacent(v,w)

Option 2: store a list of vertices
• Store a single list of vertices with links to adjacent

edges

• Vertices are mapped to 0, ..., -1

• Pros

• Index directly into the desired vertex

• In sparse graphs, faster than option 1

• time

n

O(deg(v))

A

B

D

C

E

F
I

G H

how long to iterate over
vertices adjacent to E?

• • • • • • • • •

A B C D E F G H I

C E E I

A D F

C F I

A B G H

C D
E E

B D

Option 3: adjacency-matrix
• vertices are numbered 0 to n-1

• all edge information stored in a 2D

matrix A

• A[i,j] = 1 if there exists edge

 in

• 0 otherwise
{i, j} G

how long to iterate over
vertices adjacent to E?

0

2

7

5

1

8
6

3 4

Option 3: adjacency-matrix

0

2

7

5

1

8
6

3 4

how long to iterate over
vertices adjacent to E?

0 1 2 3 4 5 6 7 8

0 0 1 0 0 0 1 0 0 0

1 1 0 1 1 1 0 0 0 0

2 0 1 0 0 0 0 1 0 0

3 0 1 0 0 0 0 0 0 0

4 0 1 0 0 0 0 0 0 0

5 1 0 0 0 0 0 0 1 1

6 0 0 1 0 0 0 0 1 0

7 0 0 0 0 0 1 1 0 1

8 0 0 0 0 0 1 0 1 0

Option 3: adjacency-matrix
• Useful computations on adjacency matrices

• deg(v) is the sum of column or row v

• adjacent(v,w) now runs in time

• stored in space

• incidentEdges and adjacentVertices
now run in time (which could often be
slower than)

O(1)
O(n2)

O(n)
O(deg(v))

0

2

7

5

1

8
6

3 4

Asymptotic Performance
• n vertices, m edges

• big-Oh time Edge List Adjacency List Adjacency Matrix

Space n+m n+m n2

incidentEdges(v) m deg(v) n

adjacent(v,w) m min(deg(v), deg(w)) 1

insertVertex(v,o) 1 1 n2

insertEdge(v,w) 1 1 1

removeVertex(v) m deg(v) n2

removeEdge(e) 1 1 1

Catalan Assignment

Demo
How to play Catalan

https://catalan.algochem.techfak.de/game.html

https://catalan.algochem.techfak.de/game.html

GML Files

• special syntax for describing graphs

• you will need to

• get the file path from command-line
arguments

• read the file contents

• construct the graph

Your work

• Vertex

• Graph

• Move

• Catalan

Your work

• Vertex

• Graph

• Move

• Catalan

getID(): each vertex has an id
that is specified in the GML file

Your work

• Vertex

• Graph

• Move

• Catalan

readGraphFromFile(String
filepath)

numVertices()

areNeighbours(Vertex u,
Vertex v)

default constructor
m

ust w
ork

Your work

• Vertex

• Graph

• Move

• Catalan

getVertices()

returns an
ArrayList<Vertex>

Your work

• Vertex

• Graph

• Move

• Catalan

getVertices()

returns an
ArrayList<Vertex>

"couldn't we just use a
Vertex[]?"

Your work

• Vertex

• Graph

• Move

• Catalan

getVertices()

returns an
ArrayList<Vertex>

"couldn't we just use a
Vertex[]?"

yes, but ArrayList<Vertex>
is very useful to know

Your work

• Vertex

• Graph

• Move

• Catalan

getVertices()

returns an
ArrayList<Vertex>

"couldn't we just use a
Vertex[]?"

yes, but ArrayList<Vertex>
is very useful to know

import java.util.ArrayList
to use!

Your work

• Vertex

• Graph

• Move

• Catalan

getNeighbours(Vertex u)

returns an
ArrayList<Vertex>

"couldn't we just use a
Vertex[]?"

yes, but ArrayList<Vertex>
is very useful to know

import java.util.ArrayList
to use!

Your work

• Vertex

• Graph

• Move

• Catalan

collapseNeighbours(Vertex
u)

collapses all the
neighbours of u.

you can only do this if u
has exactly 3 neighbours!
otherwise, nothing should

happen.

MUST MAKE A

COPY!!!!!

• Vertex

• Graph

• Move

• Catalan

Your work
collapseNeighbours(Vertex

u)

collapses all the
neighbours of u.

you can only do this if u
has exactly 3 neighbours!
otherwise, nothing should

happen.

MUST MAKE A

COPY!!!!!
A

B

D

C

A

"select A"

Your work

• Vertex

• Graph

• Move

• Catalan

getBeforeState()

getAfterState()

getSelectedVertex()

A

B

D

C

A

"select A"

Your work

• Vertex

• Graph

• Move

• Catalan

toString()

must override the default
toString(); again, useful to

know how to do

Your work

• Vertex

• Graph

• Move

• Catalan

public Catalan(String
filepath)

a constructor which takes
in the filepath to a GML file

Your work

• Vertex

• Graph

• Move

• Catalan

solve()

the culmination of this assignment!!!
use all of the previous classes you
just wrote to solve the game in the

fewest moves possible.

returns an ordered list of
ArrayList<Move>

Your work

• Vertex

• Graph

• Move

• Catalan

public static void main
(String[] args)

this file will also house the main
method.

Your work

• Vertex

• Graph

• Move

• Catalan

public static void main
(String[] args)

DEMO: running your program from
command-line and program output

Graph Traversals
• Similar to tree traversals, but for graphs

• Systematically "explore" every vertex in the

graph

• Two main flavours

• Depth-First-Search (DFS)

• iterative, using a stack

• recursively, using call stack

• Breadth-First-Search (BFS)

• iterative, using a queue

0

2

7

5

1

8
6

3 4

Depth-First-Search
• Start at some vertex and mark as visited

• Add all unvisited neighbours of to stack

• Visit next vertex on the stack and add all of its

neighbours

• repeat

• If a node has no unvisited neighbours,
backtrack (pop off the stack)

v v
v

0

2

7

5

1

8
6

3 4

Example: run DFS on G
• Start at vertex 5 and when add neighbours in

order from smallest to largest

• Colour in the edges that DFS takes

• call these coloured edges: "discovery edges"
0

2

7

5

1

8
6

3 4

Breadth-First-Search
• Run BFS starting at vertex 3.

• shade in the edges

• when choosing neighbours, visit smallest to largest0

2

7

5

1

8
6

3 4

BFS Properties
• BFS(G,v) visits all vertices in the connected

component containing v

• The discovery edges create a spanning tree in

the connected component containing v

• BFS finds the shortest path from v to any other

vertex in the tree

• Each vertex is visited exactly once

• Each edge is visited at least once and at most

twice

• Theorem: The time complexity for BFS is

 where and O(n + m) |V | = n |E | = m

0

2

7

5

1

8
6

3 4

Questions?

