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ADT: Graphs



• A graph  is a set of  vertices (nodes) and a collection  of 
pairs from , called edges

G = (V, E) V E
V

Graph Definition
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 = {A, B, C, D}V

 = {{A, B}, {A,B}, {B,D}, {B,D}, 
{A,D}, {D,C}, {A,C}}
E



Different Types of Graphs
• directed graphs (digraphs)

• undirected graphs

• simple graphs

• complete graphs

• connected graphs

• acyclic graphs

• bipartite graphs

• weighted graphs

• trees



Undirected Graphs
• An undirected edge  represents a symmetric 

relation between two vertices  and .


•  where  is an unordered pair


•  are endpoints


•  is adjacent to 


•  is incident to both 


• : the number of vertices, 


• : the number of edges, 
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Undirected Graphs
• An undirected edge  represents a symmetric 

relation between two vertices  and .

• degree of a vertex is the number of edges 

incident to it

• eg. deg(A) = 4


• parallel edges: more than one edge between a 
pair of vertices (uncommon)


• self-loop: an edge that connects a vertex to itself

• for this course, unless specified, you can 

assume the graph will not have parallel 
edges nor self-loops
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Connected Graphs
• A graph is connected if every pair of vertices is connected by a 

path

A

B

D

C

E

B

D

C

E
Connected

A

Unconnected



Graph ADT: Operations
• numVertices(): returns the number of 

vertices in the graph, 


• numEdges(): returns the number of edges in the 
graph, 


• vertices(): returns an iterator of the vertices in 



• edges(): returns an iterator of the edges in 


• degree(v): returns the degree of vertex 
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Graph ADT: Operations
• adjacentVertices(v): iterator of all 

neighbours of 


• incidentEdges(v): iterator of all edges 
incident to 


• endpoints(e):  that are endpoints of 


• opposite(v,e): , the other endpoint of 


• areAdjacent(v,w): true if  are neighbours, 
false otherwise
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Graph modification methods
• insertEdge(v,w): insert and return an 

undirected edge between vertices  and 


• insertDirectedEdge(v,w): insert an return a 
directed edge between vertices  and , with  
as the source and  as the destination


• insertVertex(v,o): insert and return an 
isolated vertex  with object  stored in the vertex
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Graph modification methods
• removeVertex(v): remove vertex  and all its 

edges


• removeEdge(e): remove edge 


• makeUndirected(e): make edge  undirected


• reverseDirection(e): reverse direction of 
directed edge 


• setDirectionFrom(e,v): make edge  directed 
away from 


• setDirectionTo(e,v): make edge  directed 
into 
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How to store a graph?
• Node-centric option


• vertex and edge objects

• adjacency-lists

• labeled adjacency-lists

• adjacency-matrix (0s and 1s)

• labeled adjacency-matrix
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Option 1: store a list of edges
• Store a list of vertices and a list of edges 

(linked lists or arrays)

• Maintain the vertices

• Maintain the edges

• Pros

• Simple, only need to store 2 things


• Cons


• vertex-centric operations run in  
time


• any vertices without edges cannot be 
stored

O(m)
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Option 2: store a list of vertices
• Store a single list of vertices with links to adjacent 

edges


• Vertices are mapped to 0, ..., -1

• Pros


• Index directly into the desired vertex

• In sparse graphs, faster than option 1


•  time

n

O(deg(v))
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Option 3: adjacency-matrix
• vertices are numbered 0 to n-1

• all edge information stored in a 2D 

matrix A

• A[i,j] = 1 if there exists edge 

 in 


• 0 otherwise
{i, j} G

how long to iterate over 
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Option 3: adjacency-matrix
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vertices adjacent to E?

0 1 2 3 4 5 6 7 8

0 0 1 0 0 0 1 0 0 0

1 1 0 1 1 1 0 0 0 0

2 0 1 0 0 0 0 1 0 0

3 0 1 0 0 0 0 0 0 0

4 0 1 0 0 0 0 0 0 0

5 1 0 0 0 0 0 0 1 1

6 0 0 1 0 0 0 0 1 0

7 0 0 0 0 0 1 1 0 1

8 0 0 0 0 0 1 0 1 0



Option 3: adjacency-matrix
• Useful computations on adjacency matrices

• deg(v) is the sum of column or row v


• adjacent(v,w) now runs in  time


• stored in  space


• incidentEdges and adjacentVertices 
now run in  time (which could often be 
slower than )

O(1)
O(n2)

O(n)
O(deg(v))
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Asymptotic Performance
• n vertices, m edges

• big-Oh time Edge List Adjacency List Adjacency Matrix

Space n+m n+m n2

incidentEdges(v) m deg(v) n

adjacent(v,w) m min(deg(v), deg(w)) 1

insertVertex(v,o) 1 1 n2

insertEdge(v,w) 1 1 1

removeVertex(v) m deg(v) n2

removeEdge(e) 1 1 1



Catalan Assignment



Demo
How to play Catalan

https://catalan.algochem.techfak.de/game.html

https://catalan.algochem.techfak.de/game.html


GML Files

• special syntax for describing graphs


• you will need to 


• get the file path from command-line 
arguments


• read the file contents


• construct the graph



Your work

• Vertex


• Graph


• Move


• Catalan



Your work

• Vertex


• Graph


• Move


• Catalan

getID(): each vertex has an id 
that is specified in the GML file



Your work

• Vertex


• Graph


• Move


• Catalan

readGraphFromFile(String 
filepath)

numVertices()

areNeighbours(Vertex u, 
Vertex v)

default constructor 
m

ust w
ork



Your work

• Vertex


• Graph


• Move


• Catalan

getVertices()

returns an 
ArrayList<Vertex>



Your work

• Vertex


• Graph


• Move


• Catalan

getVertices()

returns an 
ArrayList<Vertex>

"couldn't we just use a 
Vertex[]?"



Your work

• Vertex


• Graph


• Move


• Catalan

getVertices()

returns an 
ArrayList<Vertex>

"couldn't we just use a 
Vertex[]?"

yes, but ArrayList<Vertex> 
is very useful to know



Your work

• Vertex


• Graph


• Move


• Catalan

getVertices()

returns an 
ArrayList<Vertex>

"couldn't we just use a 
Vertex[]?"

yes, but ArrayList<Vertex> 
is very useful to know

import java.util.ArrayList 
to use!



Your work

• Vertex


• Graph


• Move


• Catalan

getNeighbours(Vertex u)

returns an 
ArrayList<Vertex>

"couldn't we just use a 
Vertex[]?"

yes, but ArrayList<Vertex> 
is very useful to know

import java.util.ArrayList 
to use!



Your work

• Vertex


• Graph


• Move


• Catalan

collapseNeighbours(Vertex 
u)

collapses all the 
neighbours of u.

you can only do this if u 
has exactly 3 neighbours! 
otherwise, nothing should 

happen.

MUST MAKE A 

COPY!!!!!



• Vertex


• Graph


• Move


• Catalan

Your work
collapseNeighbours(Vertex 

u)

collapses all the 
neighbours of u.

you can only do this if u 
has exactly 3 neighbours! 
otherwise, nothing should 

happen.

MUST MAKE A 

COPY!!!!!
A
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"select A"



Your work

• Vertex


• Graph


• Move


• Catalan

getBeforeState()

getAfterState()

getSelectedVertex()

A

B

D

C

A

"select A"



Your work

• Vertex


• Graph


• Move


• Catalan

toString()

must override the default  
toString(); again, useful to 

know how to do



Your work

• Vertex


• Graph


• Move


• Catalan

public Catalan(String 
filepath)

a constructor which takes 
in the filepath to a GML file



Your work

• Vertex


• Graph


• Move


• Catalan

solve()

the culmination of this assignment!!! 
use all of the previous classes you 
just wrote to solve the game in the 

fewest moves possible.

returns an ordered list of 
ArrayList<Move>



Your work

• Vertex


• Graph


• Move


• Catalan

public static void main 
(String[] args)

this file will also house the main 
method. 



Your work

• Vertex


• Graph


• Move


• Catalan

public static void main 
(String[] args)

DEMO: running your program from 
command-line and program output 



Graph Traversals
• Similar to tree traversals, but for graphs

• Systematically "explore" every vertex in the 

graph


• Two main flavours

• Depth-First-Search (DFS)

• iterative, using a stack

• recursively, using call stack


• Breadth-First-Search (BFS)

• iterative, using a queue
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Depth-First-Search
• Start at some vertex  and mark  as visited


• Add all unvisited neighbours of  to stack

• Visit next vertex on the stack and add all of its 

neighbours

• repeat


• If a node has no unvisited neighbours, 
backtrack (pop off the stack)
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Example: run DFS on G
• Start at vertex 5 and when add neighbours in 

order from smallest to largest

• Colour in the edges that DFS takes


• call these coloured edges: "discovery edges"
0

2

7

5

1

8
6

3 4



Breadth-First-Search
• Run BFS starting at vertex 3.


• shade in the edges

• when choosing neighbours, visit smallest to largest0
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BFS Properties
• BFS(G,v) visits all vertices in the connected 

component containing v

• The discovery edges create a spanning tree in 

the connected component containing v

• BFS finds the shortest path from v to any other 

vertex in the tree

• Each vertex is visited exactly once

• Each edge is visited at least once and at most 

twice

• Theorem: The time complexity for BFS is 

 where  and O(n + m) |V | = n |E | = m
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Questions?


