Prinzipien der Programmierung:
Graphs and Catalan

Addie Jordon (he/they)
November 2024
addie.jordon@uni-bielefeld.de

mailto:addie.jordon@uni-bielefeld.de

ADT: Graphs

Graph Definition

« Agraph G = (V, E) is a set of V vertices (nodes) and a collection E of
pairs from V, called edges

G

V ={A, B, C, D}

r = {{A, B}, {A,B}, {B,D}, {B,D},
{A,D}, {D,C}, {A,C}}

=

Different Types of Graphs

* directed graphs (digraphs)
* undirected graphs
* simple graphs
 complete graphs
* connected graphs
e acyclic graphs
* bipartite graphs
* weighted graphs
* frees

Undirected Graphs

 An undirected edge e represents a symmetric
relation between two vertices v and w.

G

D,

e ¢ = {v,w} where {v,w} is an unordered pair

* V, W are endpoints

e Visadjacenttow =

e ¢ isincident to both v, w
e n:the number of vertices, | V|

« m: the number of edges, | E |

undirected

Undirected Graphs

 An undirected edge e represents a symmetric
relation between two vertices v and w.

* degree of a vertex is the number of edges
iIncident to it

 eg.deg(A)=4

o parallel edges: more than one edge between a
pair of vertices (uncommon)

G

D,

o self-loop: an edge that connects a vertex to itself

» for this course, unless specified, you can
assume the graph will not have parallel
edges nor self-loops undirected

Connected Graphs

* A graph is connected if every pair of vertices is connected by a
path

o

Connected Unconnected

Graph ADT: Operations

numVertices () : returns the number of
vertices Iin the graph, n

numEdges () : returns the number of edges in the
graph, m

vertices ():returns an iterator of the vertices in

G

edges () : returns an iterator of the edges in G

degree (v) : returns the degree of vertex v D

undirected

Graph ADT: Operations

adjacentVertices (v) : Iterator of all
neighbours of v

incidentEdges (v) : iterator of all edges
iIncident to v

endpoints (e): v, w that are endpoints of e

opposite (v,e): W, the other endpoint of e

areAdjacent (v, w): true if v, w are neighbours,

false otherwise D

undirected

Graph modification methods

e insertEdge (v, w) : Insert and return an
undirected edge between vertices v and w

e insertDirectedEdge (v, w): Insert an return a
directed edge between vertices v and w, with v
as the source and w as the destination

e insertVertex (v, o0):Insert and return an
Isolated vertex v with object o stored in the vertex

Graph modification methods

removeVertex (v) : remove vertex v and all its
edges

removekEdge (e) . remove edge €

makeUndirected (e): make edge e undirected

reverseDirection (e) : reverse direction of
directed edge ¢

setDirectionFrom (e, v): make edge e directed
away from v

setDirectionTo (e, v): make edge e directed
iInto v

How to store a graph?

 Node-centric option
* vertex and edge objects
e adjacency-lists
* |abeled adjacency-lists
* adjacency-matrix (Os and 1s)
* |abeled adjacency-matrix

Option 1: store a list of edges

o Store a list of vertices and a list of edges
(linked lists or arrays)

 Maintain the vertices
 Maintain the edges
* Pros
 Simple, only need to store 2 things
 Cons

» vertex-centric operations run in O(m)
time

o o O O W W » >

e any vertices without edges cannot be
stored E

Option 2: store a list of vertices

« Store a single list of vertices with links to adjacent
edges

* Vertices are mapped to O, ..., n-1

 Pros
* |Index directly into the desired vertex
* |n sparse graphs, faster than option

e O(deg(v)) time

A D F ABGH

C

NS

Option 3: adjacency-matrix

e vertices are numbered 0 to n-1

e all edge information stored in a 2D
matrix A

e A[1,3] = 1 Ifthere exists edge
L,Jj1inG

e O otherwise

Option 3: adjacency-matrix

Option 3: adjacency-matrix

o Useful computations on adjacency matrices
e deg (v) Is the sum of column or row v

e adjacent (v, w) now runs in O(1) time

. stored in O(n”) space

e incidentEdges and adjacentVertices
now run in O(n) time (which could often be
slower than O(deg(v)))

Asymptotic Performance

® n vertices, m edges
e big-Oh time

Edge List Adjacency List Adjacency Matrix

Space
incidentEdges(v)
adjacent(v,w)
insertVertex(v,0)
insertEdge(v,w)
removeVertex(v)

removeEdge(e)

Catalan Assignment

Choose a GML file: IeveI_O.émI v| Restart Level

Level: level_0.gml

Demo

How to play Catalan

https://catalan.algochem.techfak.de/game.html

https://catalan.algochem.techfak.de/game.html

id
id
id
id
id
id
id

label "0"]
label "1"]
label "2"]
label "3"]
label "x"]
]
]
]
]

GML Files

label "x"
label "x"
id label "x"
id label "x"
id 10 label "x"]
id 11 label "x" 1]
id 13 label "x" 1]
id 200 label "x"]

O 00 O U B WIN =

* special syntax for describing graphs

|
|
|
|
|
|
|
|
|
|
|
|
|

* you will need to

[source 1 target 2 label "-"]

_ , [source 2 target 3 label "-"]

e get the file path from command-Iline [e T e e Ty
arguments [source 3 target 5 label "-"]

[source 4 target 5 label "-"]

[source 5 target 6 label "-"]

e read the file contents [source 5 target 7 label "-" 1
graph | [source 6 target 8 label "-"]

- Hon [source 7 target 8 label "-"]

e construct the graph ﬂgg: ig ? %gg:% --?-- [source 8 target 9 label "-"]
node [id 2 label "2"] [source 5 target 10 label "-"]
node [id 3 label "3" | [source 5 target 11 label "-"]
edge [source @ target 1 label "—" [source 10 target 13 label "-"]
edge [source @ target 2 label "-" | [source 11 target 13 label "-"]

] edge [source 0 target 3 label "-" [source 13 target 200 label "-"]

Your work

e \ertex
* Graph
e Move

e Catalan

Your work

getID (): each vertex has an id

that is specified in the GML file

* Move graph [
node [id @ label "0"]
node [id 1 label "1"]
e (Catalan node [id 2 label "2"]
node [id 3 label "3"]
edge [source @ target 1 label "-"]
edge [source 0 target 2 label "-"]
] edge [source @ target 3 label "-"]

e Catalan

Your work

readGraphFromFile (String
filepath)

numVertices ()

areNeighbours (Vertex u,

Vertex v)

HJOM }ShW
10}ON.J}SU09 }|nejap

Your work

getVertices ()

returns an
ArrayList<Vertex>

e Catalan

Your work

getVertices ()

returns an
ArrayList<Vertex>

"couldn't we just use a

Vertex[]?"

e (Catalan

Your work

getVertices ()

returns an
ArrayList<Vertex>

e Catalan

yes, but ArrayList<Vertex>

Is very useful to know

Your work

getVertices ()

returns an
ArrayList<Vertex>

e Catalan

yes, but ArrayList<Vertex> import java.util.ArrayList
Is very useful to know to use!

Your work

getNelghbours (Vertex u)

returns an
ArrayList<Vertex>

e Catalan

yes, but ArrayList<Vertex> import java.util.ArrayList
Is very useful to know to use!

Your work

collapseNeighbours (Vertex
u)

collapses all the

. MUST MAKE A
neighbours of u.

you can only do this if u
 Catalan has exactly 3 neighbours!
otherwise, nothing should
happen.

Your work

collapseNeighbours (Vertex
u)

co!lapses all the MUST MAKE A
neighbours of u.

you can only do this if u
has exactly 3 neighbours!
otherwise, nothing should
happen.

getBeforeState ()

getAfterState ()

e Catalan getSelectedVertex ()

"select A"

Your work

toString ()

must override the default
toString(); again, useful to
know how to do

e Catalan

Your work

public Catalan (String

filepath)

a constructor which takes
in the filepath to a GML file

Catalan

— e
T - ~ e ————
= = — - = = =
Ty =

Your work

solve ()

* \ertex

* Graph the culmination of this assignment!!!
use all of the previous classes you

* Move

just wrote to solve the game in the
fewest moves possible.

returns an ordered list of
ArrayList<Move>

Your work

public static void main

(String[] args)

this file will also house the main
P method.

$ java Catalan ./solveable
SOLUTION

Your work

public static void main

(String[] args)

DEMO: running your program from
command-line and program output

$ java Catalan ./solveable
SOLUTION

[Select vertex 13, Select vertex 8, Select vertex 2, Select vertex 5]

Graph Traversals

o Similar to tree traversals, but for graphs

e Systematically "explore" every vertex in the
graph

 Two main flavours
e Depth-First-Search (DFS)
* |terative, using a stack
* recursively, using call stack
 Breadth-First-Search (BFS)

 |terative, using a queue

Depth-First-Search

e Start at some vertex v and mark v as visited

* Add all unvisited neighbours of v to stack

e Visit next vertex on the stack and add all of its
neighbours

¢ repeat

e |f a node has no unvisited neighbours,
backtrack (pop off the stack)

Example: run DFS on G

o Start at vertex 5 and when add neighbours in
order from smallest to largest

* Colour in the edges that DFS takes
* call these coloured edges: "discovery edges’

Breadth-First-Search

 Run BFS starting at vertex 3.
* shade in the edges
 when choosing neighbours, visit smallest to largest

BFS

Properties

BFS(G,V) visits all vertices in the connected
component containing v

The discovery edges create a spanning tree in
the connected component containing v

BFS finds the shortest path from v to any other
vertex in the tree

Each vertex is visited exactly once

Each edge is visited at least once and at most
twice

Theorem: The time complexity for BFS is
O(n + m)where |V| =nand |E| =m

Questions?

